Fe-S-Ta (Iron-Sulfur-Tantalum)

V. Raghavan

The previous review of this system by [1988Rag] presented a tentative partial isothermal section at 900 °C for Fe-rich alloys. Recently, [2004Wad] determined an isothermal section for this system at 950 °C, which depicts three ternary compounds.

 Table 1
 Fe-S-Ta crystal structure and lattice parameter data

Phase	Composition, at.%	Pearson symbol	Space group	Lattice parameter, nm
Fe _{0.33} TaS ₂	10.0 Fe	hP20	P6 ₃ 22	a = 0.57383
(τ_1)	30 Ta			c = 1.22392
	60 S			
$\begin{array}{c}(\text{Fe},\text{Ta})_5\text{S}_8\\(\tau_2)\end{array}$	23.1-30.8 Fe	hP?	$P\bar{3}m1$	a = 0.33536
	15.4-7.7 Ta			c = 0.58140
	~61.5 S			
Fe ₂ Ta ₉ S ₆	11.8 Fe	hP34	$P\bar{6}2m$	a = 1.0266
(τ_3)	52.9 Ta			c = 0.6583
	35.3 S			

Binary Systems

The Fe-S phase diagram [1982Kub] depicts two intermediate phases. The monosulfide Fe_{1-x}S (NiAs-type hexagonal) is stable at Fe-deficient (S-rich) compositions and has a range of 50-55 at.% S. Cubic FeS₂ (pyrite) forms peritectically at 743 °C and undergoes a transition to the orthorhombic form (marcasite) at 425 °C. The Fe-Ta phase diagram [1993Swa] has two intermediate phases: Fe₂Ta (*C*14, MgZn₂-type hexagonal) and FeTa (μ) (*D*8₅, Fe₇W₆-type rhombohedral). The S-Ta phase diagram is not known. The intermediate phases, TaS₂, Ta_{1+x}S₂, Ta₃S₂, and Ta₆S, are shown as stable at 950 °C by [2004Wad].

Ternary Phases

There are three ternary compounds in this system: $Fe_{0.33}TaS_2(\tau_1)$, $(Fe,Ta)_5S_8(\tau_2)$, and $Fe_2Ta_9S_6(\tau_3)$ [1986Har, 2004Wad]. $(Fe,Ta)_5S_8$ can be written as $Fe_{0.25}(Ta_{0.5}Fe_{0.5})S_2$ to indicate that it is a TaS₂-related structure with two-thirds of the Fe atoms substituting for Ta on the regular sites and one-third inserted interstitially be-

Fig. 1 Fe-S-Ta tentative isothermal section at 950 °C [2004Wad]. Narrow two-phase regions around tie-triangles are omitted

tween layers in the S-Ta-S stacking [2004Wad]. Table 1 lists the structural details of these compounds.

Isothermal Section

With starting materials of 99.9% Fe, 99.9% Ta, 99.9999% S, FeS, and TaS₂, [2004Wad] prepared powder mixtures of 13 compositions. The compacted powders were annealed at 950 °C for 5-14 days and quenched. The phase equilibria were studied by x-ray powder and single-crystal diffraction. The isothermal section constructed by [2004Wad] is redrawn in Fig. 1. The three ternary compounds τ_1 , τ_2 , and τ_3 are present. (Fe,Ta)₅S₈ (τ_2) shows a small homogeneity range. The range shown for the binary phase Ta_{1+x}S₂ in Fig. 1 probably includes several variants of that phase.

References

- 1982Kub: O. Kubaschewski, Iron-Sulfur, Iron-Binary Phase Diagrams, Springer-Verlag, Berlin, Germany, 1982, p 125-128
- **1986Har:** B. Harbrecht, 3-d Metal Pairing in the Channel Structures of Fe₂Ta₉S₆ and Co₂Ta₉S₆, J. Less Comm. Metals, 1986, **124**, p 125-134
- **1988Rag:** V. Raghavan, The Fe-S-Ta (Iron-Sulfur-Tantalum) System, *Phase Diagrams of Ternary Iron Alloys. Part 2*, Indian Institute of Metals, Calcutta, India, 1988, p 292-296
- **1993Swa:** L.J. Swartzendruber and E. Paul, Fe-Ta (Iron-Tantalum), *Phase Diagrams of Binary Iron Alloys*, H. Okamoto, Ed., ASM International, 1993, p 395-399
- **2004Wad:** H. Wada, H. Nozaki, A. Sato, K. Takada, and T. Sasaki, Synthesis, Crystal Structure and Property of the Iron-Rich Tantalum Compounds $(Fe,Ta)_5X_8$ with X = S, Se, J. *Alloys Compd.*, 2004, **383**, p 148-151